AFML-TR-74-177

Part III

ADA 019957

will be button that which

STRUCTURE-STABILITY RELATIONSHIPS OF POLYMERS BASED ON THERMOGRAVIMETRIC ANALYSIS DATA Part III. Semiorganic Polymers

POLYMER BRANCH NONMETALLIC MATERIALS DIVISION

NOVEMBER 1975

TECHNICAL REPORT AFML-TR-74-177, Part III FINAL REPORT FOR PERIOD 1960 — 1974

Approved for public release; distribution unlimited

20040301078

AIR FORCE MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio 45433

Best Available Copy

OFFICIAL FILE CON

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (IO) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

GERHARD F. L. EHLERS

Project Monitor

FOR THE COMMANDER

R. L. VAN DEUSEN, Chief

Polymer Branch

Nonmetallic Materials Division

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE - 14-1-76 - 100

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

		READ INSTRUCTIONS
REPORT DOCUMENTATION F	AGE	BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
AFML-TR-74-177, Part III		
4. TITLE (and Subtitle)	=	5. TYPE OF REPORT & PERIOD COVERED
STRUCTURE-STABILITY RELATIONSHIPS OF		Final Report for Period
BASED ON THERMOGRAVIMETRIC ANALYSIS	DATA	1960–1974
Part III. Semiorganic Polymers	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
Gerhard F. L. Ehters	· 1	
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK
Air Force Materials Laboratory (AFMI	L/MBP)	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Air Force Systems Command		
Wright-Patterson AFB, Ohio 45433		734004
11. CONTROLLING OFFICE NAME AND ADDRESS	- ()	12. REPORT DATE
Air Force Materials Laboratory (AFMI	7/WBb)	November 1975
Air Force Systems Command		13. NUMBER OF PAGES
Wright-Patterson AFB, Ohio 45433] રા
14. MONITORING AGENCY NAME & ADDRESS(if different	from Controlling Office)	15. SECURITY CLASS, (of this report)
•	1	
	1	 Unclassified
	1	
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
		<u> </u>
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distrib	oution unlimited	•
	•	
17. DISTRIBUTION STATEMENT (of the abstract entered in	Block 20, if different from	m Report)
18. SUPPLEMENTARY NOTES	•	
•	* - 2	
•		•
19. KEY WORDS (Continue on reverse side if necessary and	identify by block number)	
Polymer Sem	iorganic	
	ucture	
Thermal Analysis		
Thermogravimetric Analysis		
THET HOST CLATHOOT TO THINK!		
20	the ter thank number	
20. ABSTRACT (Continue on reverse side if necessary and in To provide guidance for research in		is for high temperature non-
metallic materials, two previous rep	orts were issued	1 (AFML-TK-[4-1]], Parts 1
and II) in which the structures of a	liphatic, aromat	tic and heterocyclic polymers
were correlated with their thermal s		
stabilities of repeat units and moie		
ortho, meta and para substitution, c	rosslinking, mo?	lecular weight, pendant
groups and other factors were discus		
structure-stability correlation with		
	V	or common Downer Cardana

FOREWORD

The report covers thermogravimetric analysis data on polymers from inhouse synthesis work, contractual or commercial sources. The data were determined between 1960 and 1974. Results from the literature were also used.

Polymer samples with AFML given as a source were synthesized by one of the following: E. W. Choe, R. F. Kovar, H. Rosenberg and T. T. Tsai. The TGA determinations were made by personnel and students of the University of Dayton Research Institute.

TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	. 1
II	DISCUSSION	3
.•	1. Polysiloxanes	3
	2. Polyarylene (alkylene) siloxanes	6
	3. Polyarylene (alkylene) oxysiloxanes	8
	4. Polyarylenesilanes	11
	5. Polysilazanes	12
y Y	6. Ferrocene Polymers	14
	7. P-O and P-N Polymers	16
III	CONCLUSIONS	20
	REFERENCES	22

ILLUSTRATIONS

Figure		Page
1.	TGA Curves of Siloxane Elastomers	23
2.	TGA Curves of LS-53 and LS-422	24
3.	TGA Curves of "Phenyl-T" Polymer	25
4.	TGA Curves of an Arylene Bridged Polysiloxane	26
5.	TGA Curves of a Polyxylylenesiloxane	27
6.	TGA Curves of FCS 810 Polymer	28
7.	TGA Curves of a Polyaryloxysiloxane	29
8.	TGA Curves of a Polyarylenesilane	30
9.	TGA Curves of a Polysilazane	31
10.	TGA Curves of a Ferrocene Polymer	32
11.	TGA Curve of a P-O Polymer	33
12.	TGA Curve of a P-N Polymer	34

TABLES

Table		<i>y</i>			Page
1	Decomposition	Temperatures	of	Polysiloxanes	4
2	Decomposition	Temperatures	of	Arylene Bridged Polysiloxanes	5
3	Decomposition Siloxanes	Temperatures	of	Polyarylene (alkylene)	7
4	Decomposition oxysiloxanes	Temperatures	of	Polyarylene (alkylene)	9
5	Decomposition	Temperatures	of	Polyarylenesilanes	11
6	Decomposition	Temperatures	of	Polysilazanes	12
7	Decomposition	Temperatures	of	Ferrocene Polymers	15
8 .	Decomposition	Temperatures	of	P-O and P-N Polymers	17

SECTION I INTRODUCTION

To provide guidance for various research programs dealing with synthesis of high temperature polymers for Air Force applications, an attempt was made to derive structure-stability relationships from thermogravimetric analysis (TGA) data. This investigation is based on about 1300 experimental polymers, obtained between 1960 and 1973. In two previous reports (AFML-TR-74-177, Parts I and II) results on polyaliphatics, polyalicyclics, spiro polymers, phenylene-R-polymers, and polyheterocyclics were discussed. This final report covers semiorganic polymers.

The majority of the polymers under investigation have been synthesized by Air Force contractors or were the result of inhouse work; a few were from other sources or commercially available. Of the large amount of data, that obtained from polymers which could not be compared readily with others, those with insufficient information about the structure, and polymers with ill-defined structure were omitted.

The TGA data were obtained using a modified Chevenard thermobalance at a heating rate of about 180°C/hr. Most of the runs were performed in nitrogen, some in air at a flow rate of 98 cc/min. The sample size was 200 mg in the earliest runs, then 100 mg. After some modifications of the balance had been made to increase sensitivity, a sample size of 50 mg was used. These runs were carried out in porcelain crucibles (Coors 0000).

The criterion for thermal stability was the extrapolated onset of decomposition, i.e., the intersection of the tangent of the steepest part of the curve of the first major weight loss step with the tangent of the weight loss curve immediately before the actual onset of the above weight loss step, as shown below:

Discretion was used to disregard early weight losses which obviously were caused by impurities, water, solvent, etc. The extrapolated onsets thus determined were designated $T_{\rm dec}(N_2)_2$ or $T_{\rm dec}(Air)$, and listed in centigrade.

The results are discussed and compared by groups of related polymer structures. At the end of each group, the sources of the polymers are listed with the exception of those which are covered by the references. The Section "Conclusions" summarizes the most important findings of general validity.

Literature results were used if they were available as sets of data and could be compared among themselves. Different instrumentation and experimental conditions normally do not allow comparison of results obtained by different authors. The T_{dec}'s obtained from TGA curves in literature figures can at best only be approximate values.

SECTION II DISCUSSION

The polymers which were investigated and discussed in this report can be divided into the following groups:

Polysiloxanes and arylene bridged polysiloxanes
Polyarylene (alkylene) siloxanes
Polyarylene (alkylene) oxysiloxanes
Polyarylenesilanes
Polysilazanes
Ferrocene polymers
P-O and P-N polymers

Several other semiorganic polymers which are studied, such as polymers containing borine, copper, aluminum and germanium, some metal-containing siloxanes and some polychelates, were either ill defined, or the results could not be used for valid comparisons for other reasons.

The results of the individual polymer groups are discussed below.

1. POLYSILOXANES

Data collected on polysiloxanes are shown in Tables 1 and 2.

TGA curves of some representative polysiloxanes and arylene bridged polysiloxanes are shown in Figures 1-4.

The two tables show maximum T 's in the 500 to 550°C range.

Table 1 clearly indicates the order of stability

$$C_{6}H_{5} > CH_{3} > CH_{2}CH_{2}CF_{3} > (CH_{2})_{3}NH_{2}$$

for the substituents on the silicon atom, while in the arylene bridged polysiloxanes the arylene bridge seems to have a prominent effect on the stability.

The order

TABLE 1

Decomposition Temperatures of Polysiloxanes

R ₁	R ₂	$T_{dec}(N_2)(^{\circ}C)$	T _{dec} (Air)(°C)
C ₆ H ₅	С ₆ Н ₅	500 ¹⁾	5501)
CH ₃	C ₆ H ₅	480	
CH ₃	CH ₃	465	-
CH ₃	CH ₂ CH ₂ CF ₃	365 ²⁾	
CH ₃	CH ₂ CH ₂ CF ₃	330 ³⁾	310 ³⁾
CH ₃	CH ₂ CH ₂ CF ₃	480 ⁴⁾	4304)
CH ₃	(CH ₂) ₃ O CF(CF ₃) ₂	180, 380	• • • • • •
CH ₂ NH ₂	(CH ₂) ₃ NH ₂	320	
C ₆ H ₅	(CH ₂) ₃ NH ₂	280	

- 1) "Phenyl-T" polymer
- 2) Copolymer with dimethylsiloxane
- 3) LS 422 gum stock (assumed structure)
- 4) LS 53, filled and cured (assumed structure)

TABLE 2

Decomposition Temperatures of Arylene Bridged Polysiloxanes

R	Ar	$T_{dec}(N_2)(^{\circ}C)$
CH ₃		515
CH ₃	-(_)-(_)-	490
C ₆ H ₅		460
CH ₃	-	460
-CD-OCH ₃	-	410
-(← >	400
$-(\mathbb{C}_3)_2$	-()-	160

seems to suggest that the bulkiness of the group is of importance. As far as the substituents on the silicon are concerned, no apparent difference exists between methyl and phenyl; however, substituents with functional groups reduce the stability considerably.

The limited data in air (Table 1) when compared to the data in nitrogen, show a stability increase for the all-phenyl substituted Phenyl-T polymer and a decrease in stability for the alkyl substituted polymers. In the first case, crosslinking between the phenyl groups increases the stability, and only very little weight loss is involved. In the second case, the alkyl groups are oxidized under evolution of carbon monoxide and dioxide.

Sources of samples:

Dow Corning GEC Midwest Research Institute Wackerchemie AFML

2. POLYARYLENE (ALKYLENE) SILOXANES

The data in Table 3 led to the following conclusions:

Moieties in the chain (R_3) :

$$_{\text{CH}_2}$$
 > $_{\text{CH}_2}$ - $_{\text{CH}_2}$ > $_{\text{CH}_2}$ > $_{\text{CH}_2}$ - $_{\text{CH}_2}$ > $_{\text{CH}_2}$ - $_{\text{CH}_2}$ > $_{\text{CH}_2}$ - $_{\text{CH}_2}$ > $_{\text{CH}_2}$ - $_{\text{$

TGA curves of two of the polymers from Table 3 are shown in Figures 5 and 6. Sources of Polymers:

Dow Corning Midwest Research Institute AFML

TABLE 3

Decomposition Temperatures of Polyarylene (Alkylene) Siloxanes

$$\begin{pmatrix} R_1 \\ -S_1 - O \\ R_2 \end{pmatrix} = \begin{pmatrix} R_1 \\ R_2 \\ R_3 \end{pmatrix} = \begin{pmatrix} R_3 - R_3 - R_3 \\ R_2 \end{pmatrix}$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

$$= 1 - 3$$

T _{dec} (N ₂)(°C) T _{dec} (Air)(°C) Reference	540	530	465	535 340	515	490	450 370
R ₃ T _{dec}		\ (-cH, CH,-	- (CH ₂) ₂ (CF ₂) ₆ (CH ₂), -
R2	$c_{ m H_5}$	C6H5 + CH3 C6H5 + CH3	CH ₃ + C ₆ H ₅ CH ₃ + C ₆ H ₅	CH	CH	$CH_2CH_2CF_3$	CH, CH, CF,
R	C _H	$C_6H_5 + CI$	$CH_3 + C_6$	CHJ	CH ₃	CH ₃	CH

3. POLYARYLENE (ALKYLENE) OXYSILOXANES

The following orders of stability can be derived from Table 4:

Substituents on Si: C_6H_5 > CH_3

Moiety (R₂) in the chain:

The few decomposition temperatures in air are of the same magnitude or higher than those in nitrogen. This is to be expected for polymers with phenyl substituents on the silicon; it is, however, difficult to explain for a polymer with methyl substituents.

TGA curves of a polyaryloxysiloxane are shown in Figure 7.

Sources of samples:

American Potash Koppers Monsanto

TABLE 4

Decomposition Temperatures of Polyarylene (Alkylene) Oxysiloxanes

2(A T=4°C/mir	009		. u
Reference	T _{dec} (N ₂)(°C) T _{dec} (Air)(°C)	\mathbb{R}_2	
	R_{1}		
	- Si - O - R ₂ - O -		
	$^{R}_{1}$		

4(Helium, $\Delta T=3$ °C/min)		515		C ₆ H ₅ C ₆ H ₅
	510	450	O	CH ₃
3(Heating rate unknown)	525	525	0-0	C ₆ H ₅
		~450	-0-0-	CH ₃
		~470	ϕ	$C_6H_5 + CH_3$
		009~		$c_{\rm H_5}$
		200		$c_{\rm H_5}$
		570		$c_{\rm H_5}$
		5.80	ф	$c_{\rm H_5}$
$2(\Delta T = 4^{\circ}C/min)$		009		$c_{\rm H_5}$

TABLE 4 (Concluded)

				•		
T _{dec} (Air)(°C)	510	520		510		
$T_{dec}(N_2)(C)$	510	460	460	440	350	210-230
R_2		\Diamond	CH3 CH3 CH3	`\bar{\bar{\bar{\bar{\bar{\bar{\bar{	0=0	-CH ₂ CH ₂ -
я 1	C ₆ H ₅	C_6H_5	$c_{6}^{H_{5}}$	C_6H_5	$c_{6}^{H_{5}}$	CH ₃

4. POLYARYLENESILANES

TABLE 5

Decomposition Temperatures of Polyarylenesilanes

R ₁	R ₂	R ₃	$T_{dec}(N_2)(^{\circ}C)$	$T_{dec}^{(Air)(^{\circ}C)}$
C ₆ H ₅ +CH ₃	C ₆ H ₅ +CH ₃	-	505	
incre			495	
CF	¹ 3		480	
CH ₃	CH ₃		465-495	•
CH ₃	CH ₃	-CH ₂ -CH ₂ -CH ₂ -	485	
C ₆ H ₅	C ₆ H ₅		455	450
C ₆ H ₅	C ₆ H ₅	€ Fe €	380	·
СН ₃	CH ₃	♠ Fe ♠	340	

The first four results suggest, as expected, that increased numbers of methyl groups in phenyl and methyl substituted silanes decrease the stability, thus

$$C_{6}^{H_{5}} > CH_{3}$$

However, the sixth polymer does not fall into line. Somewhat questionable too, is the result of the comparison of the in-chain moieties:

$$-CH_2-CH_2-CH_2-CH_2-> \bigcirc$$
Fig.

A TGA curve of a polyarylenesiloxane is shown in Figure 8.

Sources of samples:

T.N.O. Utrecht (Netherlands) Ford Motor Co.

5. POLYSILAZANES

Several different types of Si-N polymers were investigated, as shown in Table 6.

TABLE 6

Decomposition Temperatures of Polysilazanes

	T _{dec} (N ₂)(°C)	T _{dec} (Air)(°C)
CH 1 3 - Si -NH- CH 3	~450	~450
$-O-Ar-O\begin{pmatrix} C_{6}H_{5} \\ Si-NH \\ C_{6}H_{5} \end{pmatrix} = C_{6}H_{5}$ $Si-C_{6}H_{5}$		
Ar:	~530 ^{*)}	
CH ₃ CH ₃	~520*)	
~	~510*)	

^{*)} Reference 5; data presumably obtained in nitrogen; heating rate not known.

TABLE 6 (Concluded)

A comparison of the stability of the dimethylsilazane (first polymer in Table 6) with the one of the dimethyl-siloxane suggests:

However, valid conclusions cannot be drawn from these data for the following reasons: First, both structures are idealized. The silazane

polymer is actually crosslinked through every third N-atom, while the dimethylsiloxane polymer was a cured and filled rubber. Both materials had a 2- or 3-step breakdown, and it was difficult to assign a major breakdown step, as the TGA curves show (Figures 1 and 9). The early and the high overall weight loss of the silazane polymer make it appear less stable than the polysiloxane; but the stability of the latter may be enhanced by intensive crosslinking and the filler.

The TGA curves of the polydimethylsilazane in nitrogen and in air are quite different, yet they give the same T_{dec}. The run in air does not show the early weight loss steps of the nitrogen run, apparently because in the presence of air crosslinking through the NH-groups occurs, which prevents early weight loss. A similar observation has been made in the case of the polyiminoazoles (Reference 6).

The second polymer in Table 6, with its three different moieties for Ar, shows a slight difference in stabilities as follows:

Finally, the last polymer in above table suggests:

Sources of samples:

AFML GEC Midwest Research Institute

FERROCENE POLYMERS

The following Table 7 lists the decomposition temperatures of a number of Ferrocene polymers.

TABLE 7

Decomposition Temperatures of Ferrocene Polymers (Ferrocene molecule and linking units are listed separately for convenience)

والمستود وال		${ m T_{dec}}^{(N)}$	2 ^{)(°C)}
Fe —	C ₁ 6 ^H 5 -Si- C ₆ ^H 5	410	0
n .	O -C-	410	Ō
n n	O O O O O O O O O O O O O O O O O O O	400) /
II	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		D(p) D(m)
· 11	**	350)
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	CH 3 - Si - CH	340)
tt .	-(P)-	340)
11	-CH ₂ -	330)
tf.	0 -C-O-CH ₂ -	2.80	· ·

The table indicates a $T_{\rm dec}(N_2)$ of 350°C for polyferrocene. Its stability seems to be enhanced by some in-chain moieties, such as

and decreased by others, such as

A TGA curve of a polyferrocene is shown in Figure 10.

Source of samples:

AFML

7. P-O AND P-N POLYMERS

A limited number of polymers containing P-O and P-N linkages have been investigated. The results are shown in Table 8.

While the P-O system seems to be very stable (see first polymer in Table 8), the spiro unit reduces the stability considerably. This is in agreement with earlier findings (Reference 7). The cycloaliphatic moiety further reduces the stability.

The P-N polymers are distinctly lower in stability than the P-O polymers. This became quite apparent when comparing the following two polymers from Table 8.

 $\begin{tabular}{ll} TABLE~8 \\ Decomposition~Temperatures~of~P-O~and~P-N~Polymers \\ \end{tabular}$

· .				$T_{dec}(N_2)(^{\circ}C)$
probably	-O-P-O			510
	-PO-CH ₂ CCH ₂ -OCH ₂ -	P-O-R-O-		
	R:			
	CH ₃			350
	$- \bigcirc - \stackrel{\circ}{\text{CH}}_3 - \bigcirc -$			350
	CH ₃			
	CH ₃			215
	O -P-N-			270-340
	C ₆ H ₅ OR			
	-P=N- OR		. ,	370-420
•	N(CH ₃) ₂ -P=N-			190
	N(CH ₃) ₂			170
	O R R 			400-460

TABLE 8 (Concluded)

 $T_{dec}(N_2)(°C)$

R = alkyl, fluoroalkyl or aryl

Ar = phenylene, biphenylene, diphenylenemethane

R: $-NH(CH_2)_6NH$ - 180

-NH-CH₂-NH- 220

The last system in Table 8, also with P linked exclusively to N, has the same low order of stability.

The majority of the P-N polymers have a second breakdown step between 790 and 890°C, possibly caused by the breakdown of the P-N ring system (which, in the linear P-N polymers, may have formed by a secondary reaction).

TGA curves of a P-O polymer and a P-N polymer can be seen in Figures 11 and 12.

Sources of samples:

American Potash
Eastman Kodak
Monsanto
Pennsylvania State University
Shell
University of Heidelberg (Germany)
Western Chemical

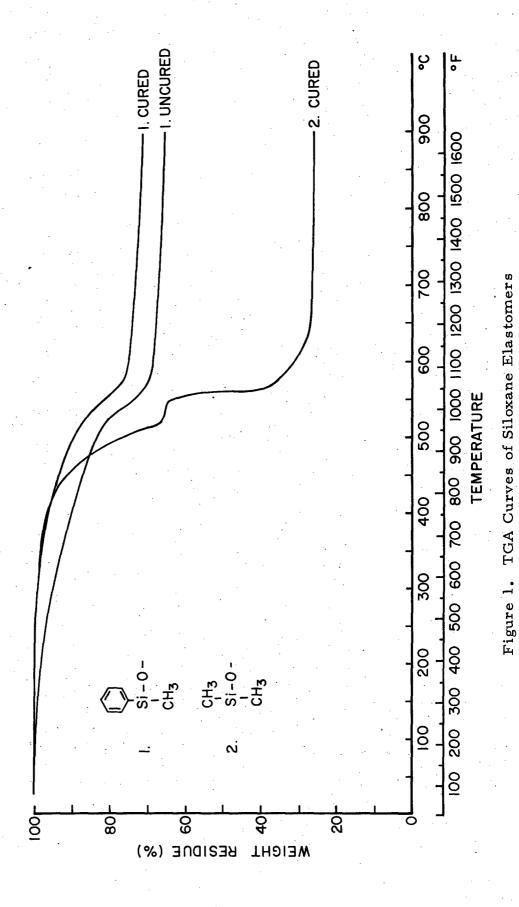
SECTION III CONCLUSIONS

The silicon-containing polymers discussed previously can be rated in the following order of stability:

Substituents on the silicon clearly fall into the order:

$$C_{6}H_{5} > CH_{3} > CH_{2}CH_{2}CF_{3} > (CH_{2})_{3}NH_{2}$$

while the effect of aromatic in-chain moieties on the thermal stability is less consistent. These moieties can be roughly divided into the following groups in order of decreasing stability:


In the presence of air, improved stability may be obtained with phenyl substituents on the silicon as a result of crosslinking through the phenyl groups. Polymers with methyl groups on the silicon show decreased stability in air, as these groups are oxidatively removed at higher temperatures. From the available data, it is not possible to decide whether the dimethylsiloxane or the dimethylsilozane unit is the more stable moiety.

The $T_{\rm dec}$ of polyferrocene was found to be 350°C. Some improvement in stability is being obtained by introducing certain aromatic moieties or the phenylsilane group into the chain.

Data on phosphorus-containing polymers show that the P-N bonds are considerably less stable than the P-O bonds.

REFERENCES

- 1. L. W. Breed, Tech. Summary Report, June 64 to Sept. 66, Contract NAS 8-11338.
- 2. W. R. Dunnavant, R. A. Markle, P. B. Stickney, J. E. Curry and J. D. Byrd, J. Poly. Sci. A-1, 5, 707 (1967).
- 3. George C. Marshall Space Flight Center (NASA), Annual Summary Report NAS 8-11837 (1966).
- 4. R. I. Stout, AFML Quarterly Report No. 6, Contract AF33(657)8641 (Monsanto).
- 5. R. E. Burks, J. D. Byrd and J. E. Curry, Insulation Materials 115 (1966).
- 6. G. F. L. Ehlers, AFML-TR-74-177, Pt. II (1974).
- 7. G. F. L. Ehlers, AFML-TR-74-177, Pt. I (1974).

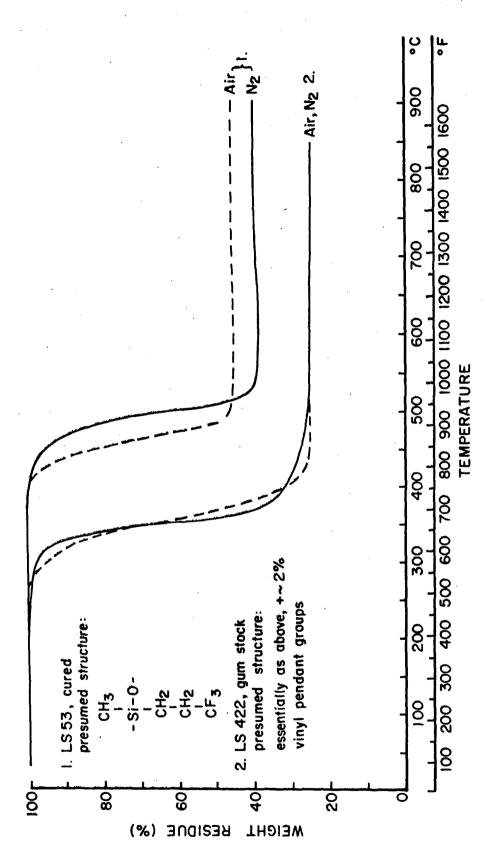


Figure 2. TGA Curves of LS-53 and LS-422

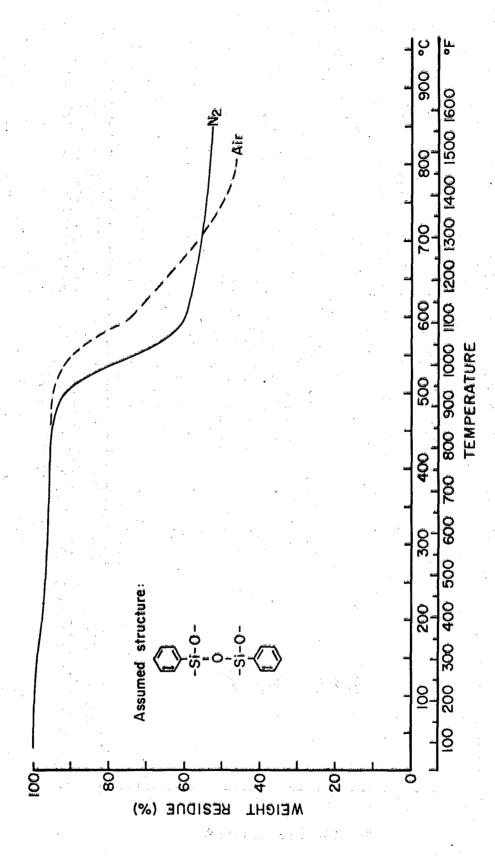


Figure 3. TGA Curves of "Phenyl-T" Polymer

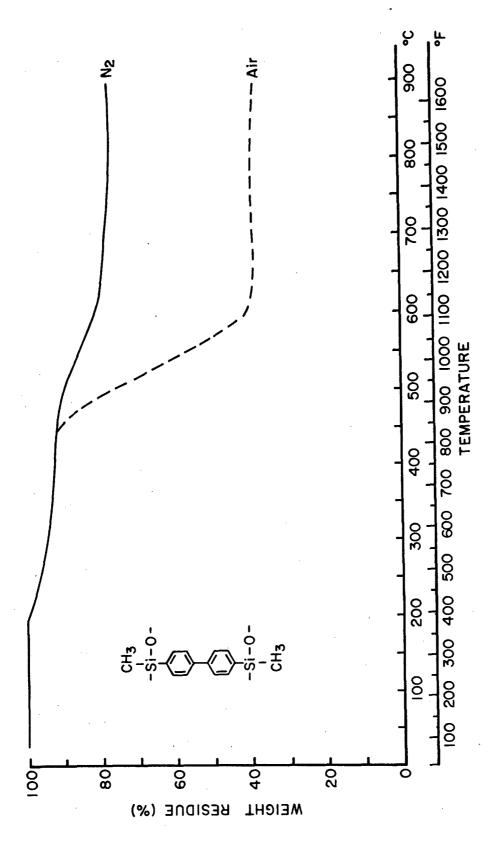


Figure 4. TGA Curves of an Arylene Bridged Polysiloxane

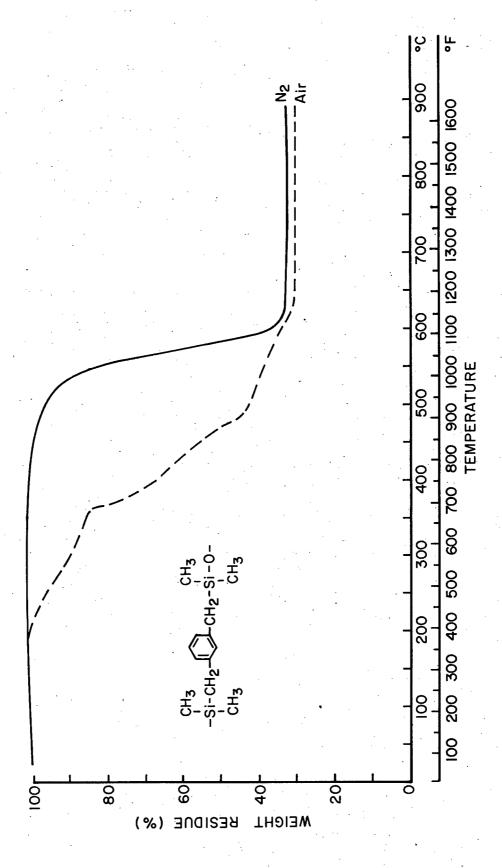


Figure 5. TGA Curves of a Polyxylylenesiloxane

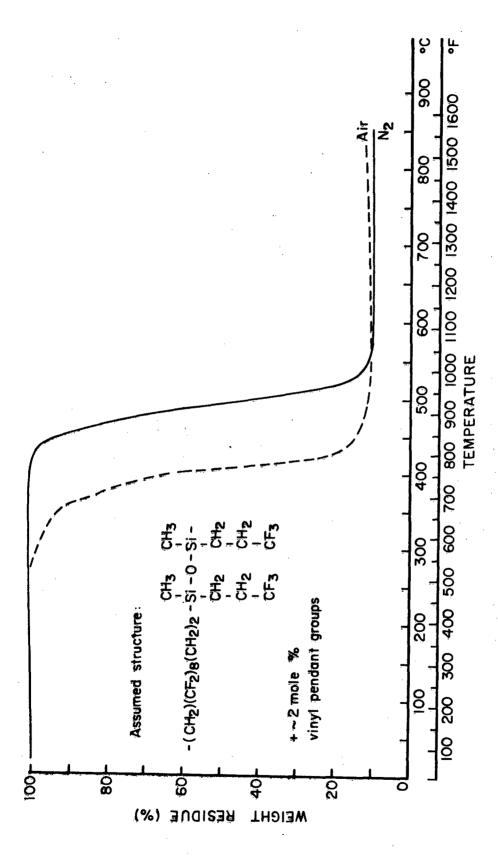


Figure 6. TGA Curves of FCS 810 Polymer

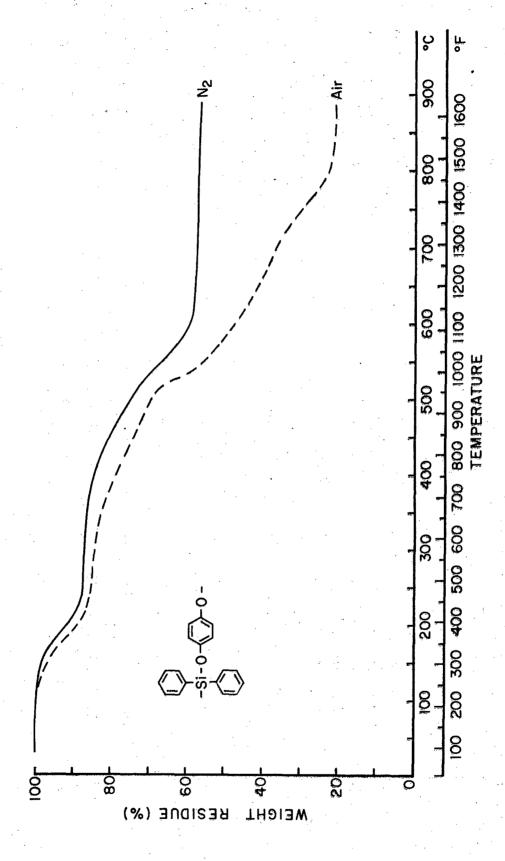


Figure 7. TGA Curves of a Polyaryloxysiloxane

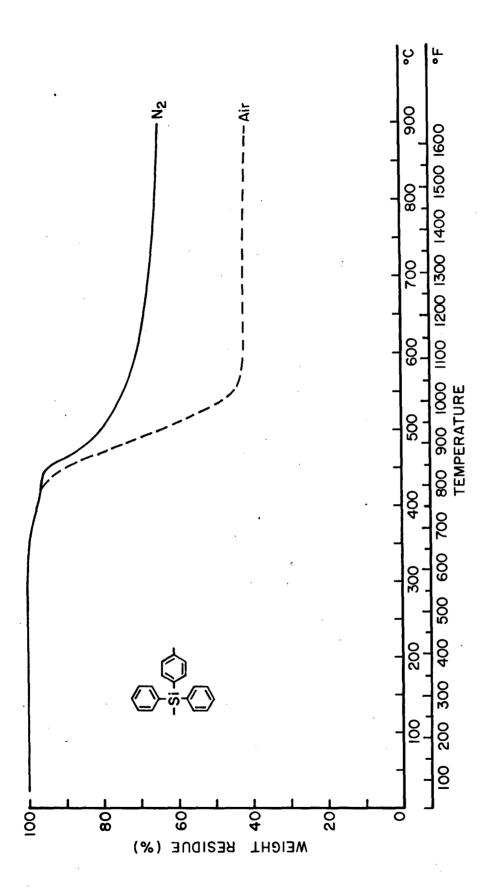


Figure 8. TGA Curves of a Polyarylenesilane

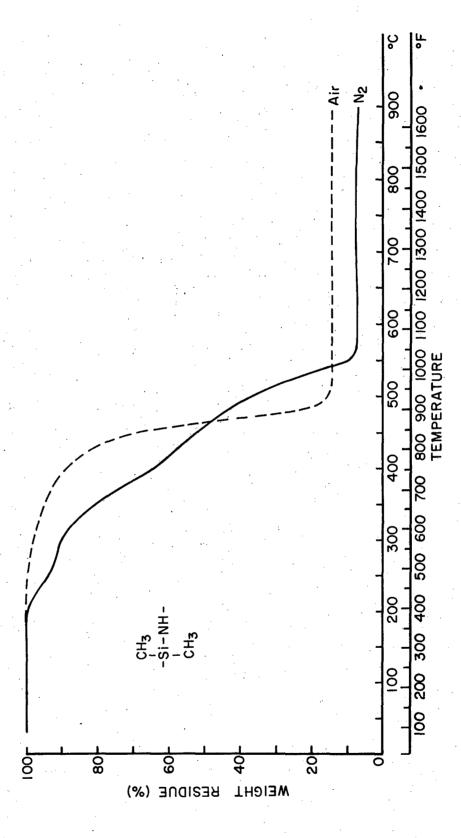


Figure 9. TGA Curves of a Polysilazane

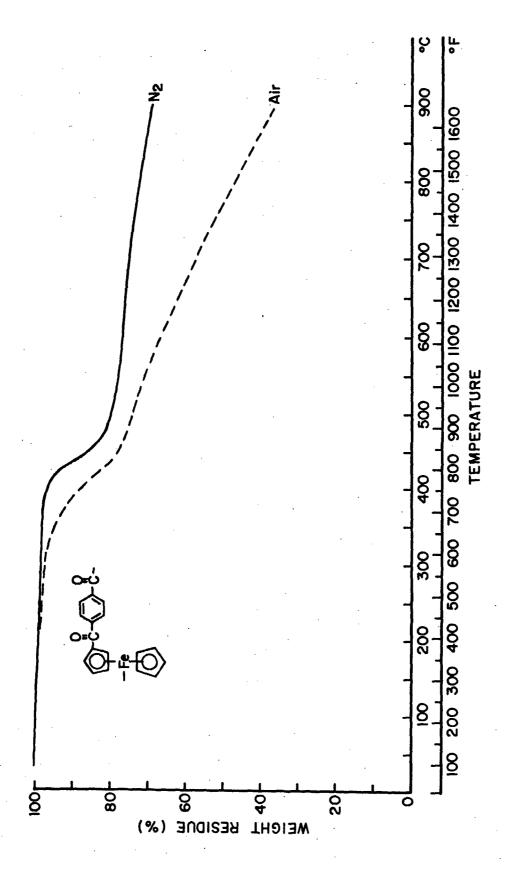


Figure 10. TGA Curves of a Ferrocene Polymer

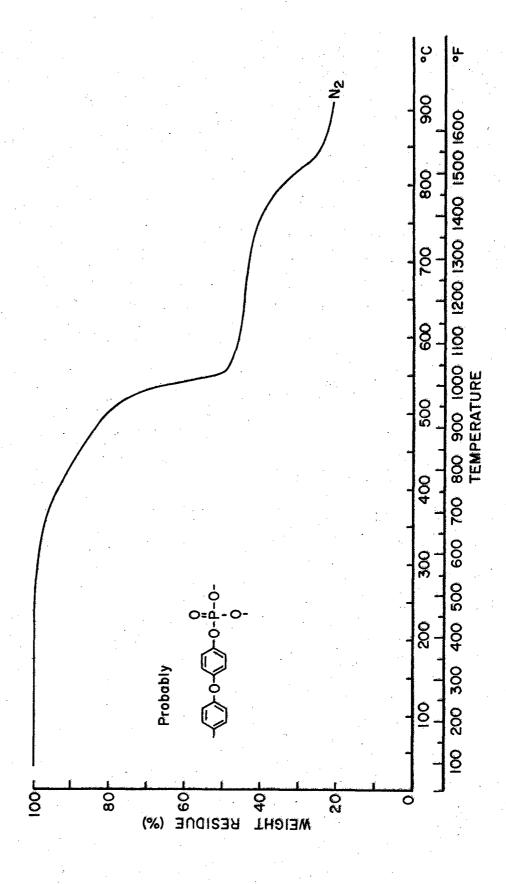


Figure 11. TGA Curve of a P-O-Polymer

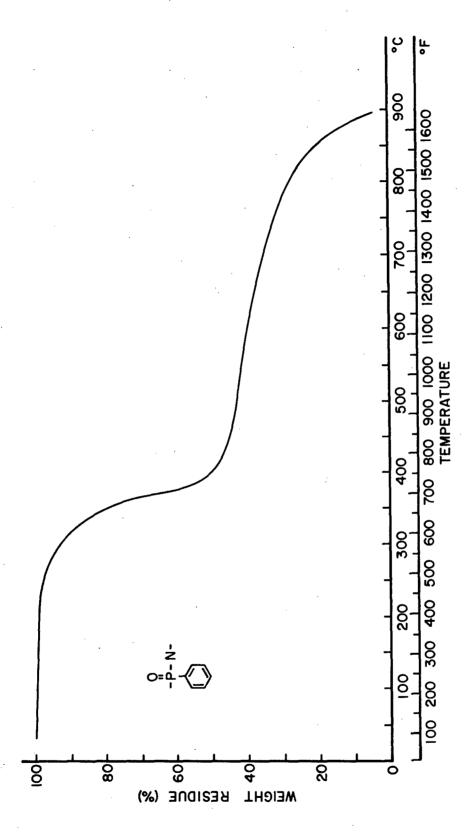


Figure 12. TGA Curve of a P-N-Polymer